preloader
  1. News >
  2. Kaikoura quake triggered widespread slow-slip events

Kaikoura quake triggered widespread slow-slip events

12 days ago by GNS Science


Hikurangi subduction zone2

Last November’s magnitude 7.8 Kaikōura quake sparked a series of major slow-slip events on the shallow part of the subduction zone beneath the east coast of the North Island, new research published this week says.

It was the largest and most widespread episode of slow-slip observed in New Zealand since scientists first recognised this phenomenon under the seafloor east of Gisborne in 2002, according to the paper in Nature Geoscience by researchers from GNS Science. 

Slow-slip events are very similar to earthquakes, as they involve more rapid than normal movement between two pieces of the Earth’s crust along a fault. However, unlike earthquakes - where the movement occurs in seconds - movement in these slow-slip events or ‘silent earthquakes’ can take weeks to months to occur.

"One of the most intriguing factors is that the quake triggered slow-slip off the Gisborne coast, up to 600km away from its epicentre in North Canterbury" says Laura Wallace

The national network of Global Positioning System (GPS) instruments operated by GeoNet detected the slow-slip events, which occurred on the Hikurangi subduction zone plate boundary in the weeks and months following the Kaikōura earthquake.

The Hikurangi subduction zone is where the Pacific Plate dives down or ‘subducts’ beneath the eastern North Island. It is the main plate boundary fault under the North Island.

The slow-slip occurred at less than 15km deep below the surface (or seabed) and spanned an area of more than 15,000sq km off the Hawke’s Bay and Gisborne coasts. This is comparable to the land area of New Caledonia.

There was also a slow-slip event triggered on the subduction zone at 25-40 km depth beneath the Kapiti coast region, and up to half a metre of post-earthquake slip (called “afterslip”) under Marlborough. The Kapiti slow-slip event and Marlborough afterslip are still continuing today, although they have slowed substantially over the last several months.

According to the study’s lead author and geophysicist, Dr Laura Wallace of GNS Science, “this is probably the clearest example worldwide of large-scale slow slip being triggered over long distances by seismic waves from a large earthquake.” 

“One of the most intriguing factors is that the quake triggered slow-slip off the Gisborne coast, up to 600km away from its epicentre in North Canterbury.”

Seismologist Dr Yoshihiro Kaneko, of GNS Science, said that the slow-slip was triggered by stress changes in the Earth’s crust caused by passing seismic waves from the Kaikōura quake.

The triggering effect was likely accentuated by an offshore ‘sedimentary wedge’-- a mass of sedimentary rock piled up at the edge of the subduction zone boundary under the seafloor off the North Island’s east coast.  

This layer of more compliant rock is particularly susceptible to trapping seismic energy, which in turn, promotes fault slip at the base of the sedimentary wedge where the slow-slip events occur.

Dr Kaneko said the study also suggested that the northward travelling rupture during the Kaikōura quake directed strong pulses of seismic energy towards the North Island, and this also influenced the long-distance triggering of the slow-slip events beneath the North Island.

The east coast slow-slip event was also responsible for sparking a series of small to moderate earthquakes off the east coast in November last year. The largest earthquake in this sequence was a magnitude 6.0 quake off the southern Hawke’s Bay coast at Porangahau on 22 November.

Although scientists are still in the early stages of trying to understand the relationships between slow slip events and earthquakes, Dr Wallace says that these exciting observations highlight additional linkages between slow slip events and other earthquake processes.

The scientists are planning to produce separate research papers on the post-earthquake slip on the subduction zone beneath the Kapiti and Marlborough regions, once those events finish.